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Diffusion and localization of surface gravity waves over irregular bathymetry
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An interaction of a linear surface gravity wave with weakly irregular one-dimensional bathymetry has been
analyzed using the diagrammatic technique. The Boltzmann diffusion coefficient and the Anderson localization
length for the wave energy density are expressed analytically via a correlation function of irregularities of the
sea floor. The results are applied to different topographies. The effect of a finite region of irregularities, viscous
damping, wave interaction, current, geometrically diffuse wave source, and anisotropy on localization is briefly
discussed. The theory provides a scenario for the observation of large scale Anderson localization phenomenon
in a tank or possibly in coastal waters.
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I. INTRODUCTION to the enhanced interference in the backscattering direction.
This phenomenon is responsible for turning a one-
The behavior of surface gravity waves in near shore wadimensional(1D) or 2D conductor with a sufficient concen-
ters is of central importance to coastal oceanography anttation of defects into an insulator at low temperatures. A
geomorphology. The interaction of waves with the coastakelf-consistent diagrammatic approach has been developed to
environment, such as bathymetry and the coastline, affect$escribe the Anderson localizati¢for reviews the reader is
the climate waves as well as the evolution of the shorelinereferred to Refs[3—6]) of electrons by impurities. This ap-
Strong variations in near-shore topography can lead to sigeroach combines the Feynman diagrammatic technique for
nificant attenuation or even total reflection of the waves. the Schroedinger wave equations with averaging over the
For water wave propagation over regularly distributedimpurity configurations and relies on the knowledge of the
sandbars on the bottom of the sea, Bragg resonance is knovexact impurity scattering matrix.
to produce forbidden frequency bands within which trans- It is well understood that the concept of localization is
mission is inhibited. This phenomenon is adapted to watevery general and is not inherent to quantum particles only.
waves from solid-state physics, where electron incident orThe only two ingredients needed for the localization to take
the lattice, with energy in the forbidden bands, is completelyplace are the wave equation and random media. There are
reflected. For water waves over two-dimensional periodimumerous examples of classical wave localization, among
bathymetry, Bragg resonance has been thoroughly studied lwhich is the localization of visible light on concentrated sus-
many authors. One of the first articles on this subject belongpension of microspherels’], acoustic and electromagnetic
to Davies(1982 [1], who demonstrated that resonant reflec-wave localizatior{8], etc. One of the first attempts to study
tion takes place if the wavelength of the incident water wavdocalization on the macroscopic scale has been made by
is twice that of the bottom wavelength. Guazzelliet al., (1983 [9] and later by Belzonst al. (1987
Unlike the case of periodic bathymetry, water wave[10]. They observed the localization of 1D surface gravity
propagating over irregularly distributed sandbars undergoewaves in a tank in which the bottom was composed of ran-
a series of elastic-scattering processes that lead to a randomgiem steps.
ization of its phase. As a result of this scattering, wave has a We present a theory that is similar to the self-consistent
diffusive nature similar to a Brownian particle. What is diagrammatic approach used for impurity scattering in the
more, at a large enough distance from the source, the wausulk. One of the differences is thatTamatrix for scattering
intensity decays exponentially. Hence, the wave does ndsy an irregular bathymetry is not available. Another differ-
propagate beyond a certain region and is completely reence arises from averaging over the different configurations
flected. This phenomenon is also adopted from solid-statef the sea floo(as opposed to the positions of impurijies
physics and is known as Anderson localizatf@h The im-  To resolve the first problem we perform canonical coordinate
portant difference between Bragg scattering and Andersotransformation that makes the boundaries flat. As a result of
localization phenomena is that the former occurs only forthis transformation the boundary scattering problem trans-
forbidden band frequency while the latter happens in the enforms into the problem of scattering in the bulk. This ap-
tire frequency range. proach to solving a stochastic boundary value problem is not
In solid-state physics, the phenomenon of Anderson localnew. For example, in Ref11,12 this method is applied to
ization of electrons is known to arise from interference ofnanascale systems with rough boundaries. To overcome the
multiple-scattered electrons from impurities. It is attributedsecond difference, we have developed an averaging tech-
nigue for Feynman diagrams, which combined with the Born
approximation from scattering theory significantly simplifies
* Address for correspondence: Cold Spring Harbor Laboratory, the diagrammatic derivation. This technique involves the ex-
Bungtown Road, Freeman Building, Cold Spring Harbor, NY pansion of averaged diagrams in deviation from Gaussian
11724. Email address: stephanya@cshl.org behavior. A similar expansion has been used together with
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the path integral method for sound propagation through @he coordinate perpendicular to it, and is the acceleration
fluctuating environment in Ref$13,14). due to gravity. So far no assumption is made about the size
Since some near-shore topographies are very close to o the bottom irregularities.
dimensional we prefer to perform all the calculations for a ) )
1D case. The approach presented can be easily extended to B. Coordinate transformation
cover 2D situation. It is also very suitable for including the  The scattering probleril) with the stochastic boundary
effects of weak wave interaction, current, and a mildly slop-condition at the bottom can be transformed into a problem
ing irregular bathymetry. with a flat boundary and irregularities in the bulk.
This paper is organized as follows: The formulation of a The canonical coordinate transformation must have the
problem of linear potential wave propagation over a 1Dfollowing characteristics:
weakly irregular bathymetry is given in Sec. Il. The canoni-(i) it would flatten the bottom boundary and leave the free
cal coordinate transformation reduces the scattering probleirface of the water unperturbed;
with the stochastic boundary condition to the scattering probtii) the transformation would simplify the boundary condi-
lem with irregularity in the bulk. In Sec. IllI, the latter prob- fion atz=—h+{(x), getting rid of the term with’ (x), and
lem is reformulated using the Green’s function formalism!eave the condition a=0 unchanged;
and is solved by the Feynman diagrammatic approach ifii) the Jacobian of the transformation equals one.

combination with averaging technique. Section IV contains ' N€ last condition is introduced for convenience, as it
the Boltzmann diffusion coefficient and Anderson localiza-EMSUres the Hermiticity of the perturbation operator. Aside

tion length for the wave energy density that are expresseHom these requirements the choice of the transformation is

analytically via the correlation function of irregular topogra- arbitrary (of course, the final result is the same for all differ-
Yy y 9 pogra- o transformations

phy. We do not go into a detailed derivation of these trans- The irregularities of the topography can be described by

port coefficients, but instead provide their expressions using, 5 <haracteristic lengths, the mean-square helightd the
general results from solid-state physics and kinetic theoryeqrelation radiusR. Our theory relies on the perturbation

The results of Sec. IV are applied to random rough topogragyxpansion, and is applicable only for small roughness
phy with the Gaussian correlation function and random step

topography. Section V contains the comparison of our theory I<h,R. 2
to the results of some theoretical and experimental public
tions on this subject. In Sec. VI, we list all limitations of the
theory and review the possibility of water wave localization

ai’his purely geometric condition is usually not very restric-
tive. Large irregularities of the bottom would lead to strong
]{eflection or even trapping of the wave. This scenario is well

?n coasta_ll' regip Ns. The destructi_ve effect of a finite regiqn Obeyond the scope of the diffusion or the Anderson localiza-
irregularities(finite size effeck, viscous damping, wave in- tion phenomenon as we know it

teraction, current, geometrically diffuse wave source, and an- 5 example of a transformation that satisfies all of the

isotropy on localization phenomenon is discussed. Sectiof},,\e conditions expanded to the first ordet iis
VIl is the conclusion. '

3 4 3 4\ 12
Z=z+ 22—+ z g(x)—(z—+ Z—)h—g"(x)+o(§2),
Il. FORMULATION OF THE PROBLEM h® h* h® h*/ 6
A. Linear potential theory 2 B\ rx
We consider a 1D linear potential wave propagating over X=x+ GE’L ﬁ Jo {(t)dt

an irregular bathymetry/(x). Function {(x) describes the
deviation of water depth from its average valueFor sim-
plicity we assume that the mean depth is horizontal, and +
(£(x))=0 ({...) denotes the configurational averaging
The velocity potentiatb for this system is described by the
following equationgd 15:

zz  Z*\h )
3;4‘4? gg (X)+O(§ )

As a result of this transformation the scattering problem
with the random boundary conditiofi) transforms into a
problem of scattering in the bulk

Pd PP
—2+—2:0, —h+§(X)SZ$0, 0»‘2 (92
oxe  Jz —+—-V|®=0, —h=<Z=<0,
X% §Z?
i (?CD_O I JP
Gz W70 am T, —=0, z=-h,
. PO 9P @
PP 9P o _
——|—g—:0, ZZO, 2 + By —0, Z=0.

The perturbation operatdf has the form(for brevity we
the origin of the frame&z is chosen at the free surface with use lower case& andz in what follows

031202-2



DIFFUSION AND LOCALIZATION OF SURFACE. ..

PHYSICAL REVIEW E 63 031202

. |4 322 223 oz z? 4z3 ) ? P
B AR R oA P R | e
24 f d z 222 223 z* h? o @2
+ h2 h2 §(X X' — h+ ?4_ h h4 é’(X)‘F— E"‘ g (X) IXIZ
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The solution of the Eq(4), that satisfies both boundary
conditions atz=—h andz=0, can be found in the form

CI)(x,z,t):nZOffn(z,w)cﬁn(x,w)ei‘”tg—:

(6)
where functiond , are orthonormal in the sense that
0
J fr(z,0)f(z,0)dz= 5 . (7)
—h
Indexn=0 denotes the propagating solution with
2 coslikg(z+h)]
fo(z,0)= : 1 8
[h+sinh(kgh)coshkgh)/kg]
w?= gk, tanh(koh). 9)

The nonpropagating Evanescent modes correspomd=tb
to =

V2 cogky(z+h)]
f =
n(2,0) [h+sin(k,h)cog k,h)/k,]¥2’ (10
w?=—gk, tan(k,h). (11)

Substituting solution(6) into (4), and taking the Fourier
transform we get

2 | 5+ (200~ D= V(x,2) | To(Z.0) bnl(x,0)

=0, —h=sz=<O0. (12

Multiplying this equation byf ,(z,w) and integrating over

z from —h to O we obtain a system of coupled differential

equations
” 92 R
go y+(25n,0_1)k§ Smn—Vin(X) | dn(X, @) =0.

13

The coupling is due to the nondiagonal nature of the ran-
dom perturbation operatdf

N 0 N
Vm,n:f fn(Z,0)VT,(z,w)dz (14
~h

IIl. DIAGRAMMATIC APPROACH

A. Green’s function

The Green'’s function for the equatiofik3) is defined as
the solution of the following set

s 2

n=0

2

~Vin(X) |G k(XX @)

+(28,0— 1)k2)

= Smkd(X—Xx"). (15

To S|mpI|fy the diagrammatic derivation it is useful to
separate\/ into its averaggV) and the deviation from the
averageV— (V). The presence ofV)=0(Z?), under the

condition (2) leads to a mean-field correction to the disper-
sion relation, and small coupling between the Eth) al-

ready in the zero order i — (V). The goal of this paper is
to calculate attenuation of the wave to the leading ofdet
the mean-field corrections to the dispersion relation and
transport coefficienishat comes from the tertd— (V). For
this reason we can truncate the expressiot/ab) at the
leading ordeiO(¢). In all the following calculations we will
use this truncated operator, that has zero average due to the
random nature of irregular topography.

In the zero order in perturbatiod the set of Eq.(15)
decouples and the solution is easily found in Fourier space,

. ., dk
GO A =X w) = f GO Ak, w)e ) ——,

GORAK,w) = 8, GOk, w), (16)

1
(28, 0— 1)K3(w)—K2Fi0

G(O)R A

K,w)= (17)

SuperscriptsR and A stand for retarded and advanced
Green’s functions, and a small pol® in the denominator
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X X x x x X X If A(Xq),A(X2), ... A(Xy,) are drawn from a Gaussian
= + > distribution the Z-point correlation function completely de-
couples into a sum of all possible products of two-point cor-
relation functions

FIG. 1. Diagrammatic representation of the E@8) for the
Green’s functionGRA,

En(Xa, - .« Xan)
specifies the direction of contour integration B§?* in
. . — G G G
Eq. (16). The nonperturbed Green’s functions corresponding —; E7 (X Xi )€ (XignXi,) « o E5(Xi, W Xi) ),
to Evanescent modes € 1 to «) attenuate exponentially at
distances between the obserwveand the source’ larger (23

than the wavelength. For these modes small palé is not , ) )
important, and there is no difference between retarded anynere the summation goes over all possible permutations of

advanced Green'’s functions. POINtSXy, X, . .. Xz - _ o
The exact solution of the set of equatiofs) (exact For functionA (not necessarily Gaussinsatisfying the
Green's functioh G,ﬁ",;\(x,x’,w) satisfies the integral equa- conditions(20), (21), and(22) we recursively define a devia-
* tion of the Zh-point correlation function from its Gaussian

tion
analog
G%,/'_(\(X’X,’w):GET(I),LRYA(X_X,’w) Don(X1, « -+« Xon) = &2n(Xq, - - - Xan)
+”2_0 GORAX=X", ) =2 &%) - &, X))
~ -1
XV, (X", ) GRAX" X", w)dX". (18) "
i ik —]Zl EP‘, Doj(Xiy, - - Xiy)

The expressiolil9) is illustrated in Fig. 1 using Feynman
diagrams in coordinate representation. The thin line denotes X§2(nfj)(xi2(j+l)’ s ’Xiz,])- (24)
the nonperturbed Green’s functic®®©RA, the thick line
corresponds to the exa@®*, and the cross is the perturba- It follows from Eq. (24) that D,=0. Another important
tion V. Over all internal indexesi(j) and variables ")  Property of the deviatioDy(xy, . . . Xan) iS that it s trans-

summation and integration is assumed. lationally invariant satisfying the conditiof20), and it goes
to zero as the distance between any two groups of its vari-

. . ables becomes larger than the correlation ra@us con-
B. Averaging technique trast to the A-point correlation functioné,,, which de-

We define a many point correlatigf of a random func-  couples according to E¢22)]. This property oD ,,, which

tion A as the average over all realizations of the product  follows from Eq.(22), will be used later in combination with
the Born approximation to simplify the evaluation of the

En(X1, X2, .o Xn) =(A(Xp)A(X2) ... A(Xp)). (190  average Green’s function.

Let us assume that a random functidfx) has the fol- C. Average Green’s function
lowing properties:
(i) the even point correlation functiafy,, of A is translation-
ally invariant

The configurationally averaged Green’s functif@yy
depends on the difference between the coordinates of the
source and the observer, and can be found from perturbative
expansion of the right-hand side of the Ef8). It contains
the averages of products of random perturbafi’orwhich is
assumed to meet all the conditions of Sec. Il B. From this
moment it is more convenient to continue the derivatiok in

§2n(X1,X2, PR !XZn):§2n(Xl+ a,X2+ a, ... ,X2n+a) (20)

(i) for an odd number of points the correlation function
&oni1 IS ZEro

space.
After we reduce all the different products of random per-
Ean+1(X1. Xz, - - Xon+1) =0 (21 tyrbationV according to Eq(24), the resulting averages can
. be described by averaged Feynman diagrams. Some of these
(iii ) for two groups of pointsy, ... Xy andXy,1, ... Xn,  diagrams are presented in Fig. 2. The shaded line in the

separated by a distance much greater than the correlatiasft-hand side corresponds to the average Green’s function
radiusR of random functionA(x), the 2n-point correlation (Gﬁ";(k,w)), the thin line again isGORA(k,w). The

function decouples dashed(averaging line represents the configurational aver-
aging. Hence, in the second diagram on the right of the
Eon(Xqy o Xon) = E(Xqy + v XK Eonk(Xkr 1y + -+ Xop)- equality sign two crosses connected by a dashed line denote

(22 (V; j(Kky)Vpq(Ks,K)), where
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k-k
N . e 7B & NN (GRAK,w)) =2 GORAK,w)SRAK,w)(GRA(K,w)).

= + Il + l{ U [{ \ 1) 26

m n m n mij pq n ( )
’/’,_’t:\\\\ T T RN

L// {’/ \l \ ‘/ /’ NN Solving this matrix equation we find the average Green’s

* — —* function (Ga(k, »))
A7 NN RA 0 1_vRA 1

(G™Ak,0) =[G (k,w) *=ERfAKw)] !, (27)

+ +

_ FIG.R%. Diagrammatic expansion of the average Green’s funCWhere bold letters represent matrixes, and in the super-
tion (G™(k ). script denotes the matrix inversion. At this point in the dia-
grammatic derivation, wave scattering by random irregulari-

_ i iy x ties of the sea floor converges with the well-established
Vij(kky)= | eV (x)e"*dx. (25 theory of electron impurity scattering.
The averaging lines connecting several croskes diagram D. Born approximation and mean-free-path

represent the deviation of the many point correlation func- Up to this moment we did not make any assumptions on
tlo|? frolr(n ESk SaUSSIan analog D2“_(k_kf1’k1 the wavelength\. The assumptiori2) is purely geometric.
Kz, ... Kan-1—K). Al every cross(intersection of WO 14 fing the average Green'’s function according to @7) it
thin lines and an averaging Imehe(e is a conservation of is necessary to make an approximation of fematrix,
thg Wivti numbet(jsee_ th'(:a. Secz:ond diagram on the rlght'handgiven by the diagrammatic expansion in Fig. 3. The approxi-
S| _Ie_ 0 e_dequa:)u?[? In :jg.) tandi fth ict mation of theX, matrix in the leading ordefleaving only the
0 provide a better understanding of these pictures we pyf diagram in Fig. 3 comes from scattering theory and is
fche ;econd diagram in t.he right-hand side of the equality SI9%alled the Born approximation. This approximation for scat-
in Fig. 2 in the algebraic form tering by impurities simply means that a parti¢ieave un-
dergoes twqif one uses the coherent potential approxima-
tion) consecutive scattering by one impurity before it is

2> GRFAK,0) A, w) scattered by another impurity.
PR For scattering by an inhomogeneous topography the pic-
dk, ture is similar. In this case, the Born approximation means
Xf GJ(,O;ZR'A(kl,w)<Vi,j(k,k1)Vp,q(k1,k)>E- that a wave propagating freely from the source, is scattered

twice in the vicinity of the same irregularitidefined by the
correlation radiuR of the topographyand propagates freely
Figure 2 contains a diagrammatic expansion of the averto the next irregularity where it again undergoes a double
age Green’s function in terms of a small perturbaﬁbﬁl’his scattering, and so on until it reaches the observer. The Born
expansion involves an infinite number of terms. We can re@pproximation implies that scattering is weak, and there is no
duce the number of terms in this expansistill leaving an  need to account for multiplémore than doublescattering
infinite numbey by introducing a3 matrix. This procedure Processes by the same irregularity.
will account for all the diagrams that can be cut in two by a  Comparing the fourth-order diagrams in the expansion for
vertical line intercepting only a Green's function. Diagramsthe = matrix given in Fig. 3 to the diagram of the second
of this kind are called reducible diagrarttiird diagram on order inV (the leading diagram in the expansiame get the
the right of the equality sign, Fig.)2The result is known as Born approximation condition
Dyson equation and is illustrated in Fig. 3.

In algebraic form Dyson equation is (IR ? >< 1 ”2
— | <|max kh,—1| . (28)
kh
=g = + 2 | =]
/’»\\ // /,7"<\\ N // // \\ \\\ The diagrams containing the deviatibnare smaller than
T = ok Yo ook ) R L USN the diagrams of the same order not involvibg In proving
A this statement one has to take advantage of the property of
///7 AN D D,,, that it goes to zero as the distance between any two
. ) \ N N groups of its variables becomes larger than the correlation

radiusR, setting a constrain on the integration region. This

FIG. 3. Dyson equation and diagrammatic expansion ofthe insures that th& matrix can be correctly approximated by
matrix. the first expansion diagram in Fig. 3.
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It is worth mentioning that if (R/h?)2<1, the Born ap-

) A 1 ' R 1 3sinh(2kh)
proximation condition(28) is satisfied for all waves. Uo(k,k")= —_—

2kk’+(k+k’)2<§+

The Born approximation simplifies the matrix inversion in 4kh’
the expression for the Green'’s functi@@v). For weak per- 2 .
turbation, the nondiagonal elements in Eg7) are small, n 3[1—coshzkh)] &2k —k)
and(G) can be approximated as 4k*h* [h+ sinh(2kh)/2k]?’
(34)
(GRAK,w))= 2 (29 Im[SR(w)]
(25i,0_ 1)k| (w)—k _EI,I’ (k,w)
3 sinh(2kgh)
=| £2(2ko) + £5(0)| 2+ —————
The propagating Green'’s function in this approximation is 2kgh
not coupled to the Evanescemonpropagatingmodes, and 2
has a form L3t 1-cosh2kgh)] k3 -
2k3h* [h+sinh(2koh)/2ko]?

The mean-free-pathy,,, i.e., the distance over which
waves lose coherence, is defined as

(Gha(k,w))=

kj(w)—k2—3S88(w)

The Born approximatiori28) also insures that the imag- 2ko( @)
iner part of S5¢'(w) is much smaller thakj(w), and the It @)= - i :
thickness of the spectrum line is negligible IM[Zg @)~ w)]

(36)

It follows from Eq. (30) that the average wave amplitude
(Ghdk ) —(Ghok,w))=2mi d(kj(w)—k?). (31)  decays exponentially with the exponentl}{3(w), and

. . . g . Imfp(w)7l
The 3 matrix in the Born approximatioffirst expansion
diagram for2 in Fig. 3) can be calculated according to the 3 sink(2kgh)
rules of the diagrammatic technique§ , and .5, are com- =| 2(2ko) + £2(0)| 2+ B
plex conjugate to each other, and their difference describes 0
Tlr’:s attenuation of the average wave amplitude due to scatter- 3[1-cosh2ksh) ] 2 k?, -
’ 2kén* [h+ sinh(2keh)/2k,]?”
S8 @)~ 2o w)= f Uo(ko,K')[{ GGk’ ,)) IV. RESULTS
dK’ A. Diffusion coefficient and localization length
—(Géo(k’,w»]z— In this section we use some general results of solid-state
’ am . . . . . .
physics and kinetic theory to obtain analytic expressions of
i the Boltzmann transport equation, Boltzmann diffusion coef-
= Sk LYo(ko ko) +Uo(ko, ko) ], ficient, and the localization length for the wave energy den-
0 sity. We are not going to duplicate the derivation of equa-
(32)  tions from this theories. For a detailed diagrammatic
description of transport phenomena we refer the reader to
i numerous books and revie4,5,16,3,6.
where we used Eq31) to evaluate the mtegral._ Head _ Wave energy(energy per unit area of the sea surface
represents two crosses connected by an averaging line andjgich is the sum of the kinetic and potential energies can be
called the Boltzmann irreducible vertex function, defined in terms of the velocity potential in the following
way [15]
Uo(k,K") =(Vodk,k")Vodk' k). (33 p [0 [|od|? |od|? p |od|?
E(X,t)_szh W + E Z+5 Wz=0 (38)

Direct calculations for the perturbation operatéy give
the following expression for the irreducible vertex function  The energy stored in the propagating mode=Q), aver-
Up and INfSR]=—Im[Z4] aged over several typical periods of waves from the incident
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band, can be found by substituting the velocity potential in 9 9
the form of Eq.(6) into the above expression and using the EEO,O(kOaXJ)‘l'Cg(kO)(?_X Eo,o(Ko,X,1)
orthonormality condition(7),

d
-5 2

Averaging Eq.(39) over different configurations of the

zﬁjl floor we obtain the expression for the wave energy der\'ﬂ/hereEo,o(ko,x,t) is the wave energy density stored in the

propagating mode corresponding to the wave frequancy
[w is related tok, according to Eq(9)]. At an intermediate
propagation distancéorder of the transport free path but
smaller than the localization length,.) the wave energy
density propagation is diffusive. In 1D the interval when
This expression is identical to the one for electrons indiffusion can occur is very narrow, and the Bolizmann dif-

disordered media, described by the Schroedinger equatioFHSiO” coefficient42) is renormalized down by the coherent

Hence, the results from solid-state physics can be used fyACK scattering phenomenon. At large distatleeger than
find the transport free path, the Boltzmann diffusion coeffi-the localization lengththere is no transport or diffusion, and

cient, and the localization length for wave energy density. the wave energy density is localized.
The transport free patlﬂ]fp, the length scale over which

2

- %(k") f Uo(ko,k) (k2= k)
+k3() °

®o

dw
2) > (39

dk
X[EO,O(k!th)_EO,O(kOYX!t)]El (44)

ddo
dx

Eod w.x,0)= §(< 2> +ké<w><l¢>o|2>). (40)

the wave energy density becomes diffuse, is B. Correlation function of irregular topography
In this section we consider two possible realizations of the
. 2k§ [h+sinh(2koh)/ 2k ]? irregular topography. The results for the transport free path
I @)= G~k — > : (41) and the Boltzmann diffusion coefficietd2) are related
o(ko, —Ko) 2K5£,(2Ko) - = : ;
to the localization length, and in what follows we will show

(4D plots only for the localization lengtt43).
For some random topographies the two point correlation

mfp
& (X)=12exp(—x?/2R?),

_ Cy(lko)[h+sinh(2kqh)/2ko]? - , - (45)
= 2K 2ke) , £ (K)=\2m2Rexp —k?R?/2).

(42

Dg(w)=Cqy(Ko)Imep(@)

In these expressiorlsis the mean-square average height of
the irregularities andr is the correlation radiugcharacteris-
whereCgy(ko) =dw/dk, is the group velocity of the wave.  tic size). The second expression in Eg5) is the correlation

In the 1D case a coherent back scatteliimgerference of  function in the Fourier representation.
waves in a back scattered directideads to the reduction of Figure 4 shows the dependence of the localization length
the diffusion coefficient(42) and localization. To describe (43) on wave numbek, for the Gaussian correlatiof#5).
this effect one has to go beyond the Boltzmann approximaThis dependence has some general features inherent to all
tion, and consider a series of maximally crossed diagrams iforrelation functions of bottom irregularities. The localiza-
the irreducible vertex functiotlo(k,k") [the Boltzmann ap-  tion length diverges at very small and very large frequencies.
proximation includes only one diagra83)]. The result of |n the low-frequency limit(Rayleigh scatteringthe waves
the 1D localization theory is that the wave energy densitydo not resolve the structure of the irregularities, the scatter-
decays exponentially with the distance from the source to thgg cross section in general is proportional @8, and the

observer, and the exponent idg{, transport free path diverges &8w *~k 2. In the high-
frequency limit the localization length diverges again, be-
2[h+ sinh( 2koh)/2k,]2 cause the points of two consecutive scattering processes are
I|oc(w)=4lﬁrr]fp(w)= > (43 not correlated. Another obvious feature of the localization
kg&2(2Ko) length is that it increases with the increase in deptfsee

Fig. 4. The minimal localization length correspondskBR
To summarize, the behavior of the wave energy density~1, when scattering is the strongest.
has a different nature depending on the distance between the Next, we consider the topography consisting of random
source and observer. At a small propagation distancsteps. The lengths of the stepsare randomly drawn from
(smaller than the transport free path, but much larger than thée distribution uniform ol. — AL to L+ AL. The heights of
typical wavelengththe wave energy density propagates ac-the stepsH; above the average depth level are drawn from
cording to the Boltzmann transport equation the distribution uniform on the interval from AH to AH,
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FIG. 4. Localization lengtH,./R, Eqg. (43) as a function of

wave numbekyR for the Gaussian correlation function of irregular

topography(45) with I/R=0.1. The thick line corresponds R
=0.5, and the thin line tt/R=0.7.

+ oo

£(x) =2 HilB(x=%i_1) = 0(x=x))],

(46)
Li=Xi—%Xj_1-
The correlation function for this topography is
2
fz(X)ZB—L
L—|x|, Ix|<L—-AL
x{ (L+AL—|x])%/4AL, L—AL<|x|<L+AL
0, L+AL<|x],
2AH? sin(KAL)
&a(k)= s | 1 kAL cogkL)|. (47)

The correlation radiuR in this case is of the order @f, and
the mean-square height of the irregularitiesAH/ /3.

This geometry is considered in order to compare the re
sults of this theory to the experimental work of Guazzetli
al., Belzonset al.,and some theoretical calculations. This is

done in the next section.

Finally, let us see what happens if we formally apply the
result(43) to a regular, periodic bathymetry with the period

2K,
{(X)=H cogKXx). (48

The correlation function in this case is

H2
£2(X) = - oK),

PHYSICAL REVIEW E 63 031202

H2

£00= "S- [8K++3K-K)], (49

and the correlation radiuR is infinite. The infinite correla-
tion radius immediately violates the Born approximation
condition(28). In spite of this, the localization length calcu-
lated according to the equatiori$3) and (49) has a very
interesting feature. The localization length for the periodic
bottom is infinite(wave propagates freelyor all wave num-
bersk except fork=K/2 when the localization length be-
comes zerano propagation This is a trace of the Bragg
resonance. The reason why we obtain only the indication of
the first forbidden band can be explained by the fact that the
Boltzmann approximation, used in the derivation, is only the
second-order approximation to tlematrix.

V. COMPARISON WITH OTHER CALCULATIONS

In this section, we compare the results of our theory to
some theoretical and experimental works on 1D water wave
localization over irregular bathymetry. We start with the ex-
perimental work of Belzonst al.[10]. One of the results of
this paper is the dependence of the localization length on the
wave frequency. The measurements were done in the tank in
which the bottom was composed of 58 random steps. Due to
the finite-size effect the error bars of the measurements were
very large everywhere, except for the frequencies for which
the localization is the strongest. The error bars are the result
of configurational averaging over five different realizations
of the bottom geometry. The work of Guazzedi al. [9],
which is the first experimental work on surface gravity wave
localization, is done for a single configuration and does not
include error bars. For this reason it is not well suited for
comparison.

In Fig. 5, we compare the results of our thepBgs. (43)
and(47)] with the experimental results of Belzoasal. The
agreement between theory and the experiment is very good
in spite of the fact that the mean-square average height for
the stepsl=0.72 cm, and it is not much smaller thdm
=1.25 cm, violating the perturbation conditi¢?). This can
be explained by the fact that the next correcting term to the
localization length provided by Ed43) is of the order of
12/h?=0.33, and is small in comparison to the leading term.
Since the experiment has been done in 1 Hz to 3 Hz fre-
guency range, the Born approximati(28) is valid.

" There are two inherent problems in comparing the results
of the experiment to the theoretical results obtained from the
linear potential theory. The steps in the experiment of Bel-
zonset al. dissipate energy by generating vortices around the
edges. It is very difficult to distinguish the localization re-
lated decrease in the average wave amplitude from the above
dissipation mechanism. Another problem is associated with
very high stepdsteps that almost reach the free surface of
the wateJ. In order to make an experiment in a relatively
small tank, and to have reasonably small localization length
(smaller than the size of the tanthe authors had to use tall
steps. For waves over these steps the linear theory is not
valid, and instead of Anderson localization one could get
nonlinear trapping of the wave.
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FIG. 5. Localization length,,. as a function of wave frequency FIG. 6. ITocallzatlon lengthlo, /L as a function of wavelength
f for an irregular topography composed of random steps. The soli&‘”‘, fqr an irregular topogrgphy composed of random ste.ps. The
line is the result for the infinite geometry provided by the EdS) 59"“ line is the result prowd_ed by the qu,,s) and_(47). Points
and(47). The points with error bars are the experimental results 01Wlth error bars are the numerical calculation of Devillaetdl., Ref.
Belzonset al. [10]. The average water depth is=1.25 cm, the [17], whereAL/L=0.5, AH/h=5/7, andh/L =7/16.

average length of the step is=4.1 cm, AL=2.0 cm, andAH . . . .
:1.259 cm. g P ditions (2) and (28) are valid for many coastal regions, this

approach is well suited for investigating the possibility of a
In the theoretical work of Devillarét al. [17], the local- large scale Anderson localization phenomenon.
ization length is found from the linear potential shallow wa-
ter theory. The authors are using the transfer-matrix ap- vi. LIMITATION OF THE THEORY AND POSSIBILITY
proach for the bottom composed of random steps. This 1D OF OBSERVATION OF WATER WAVE
theory does not provide correct results in the limit of high LOCALIZATION
wave numberg, due to the fact that the shallow water theory i , . ) . .
conditionkh<1 breaks down. Otherwise, the results agree N this section, we briefly discuss the assumptions made in
with our calculations done for steps with small amplitudes.the theory on the nature of the wave and the environment in
To extend the theory to the larderegion, the authors per- Order to have localization according to 43). The assump-
form a numerical study based on the full linear potentialt'ons a through f are needed for a tank experiment similar to
theory. A wide spacing assumpti@h is made in order to  the one done by Belzoret al. [10]. For a near-shore local-
neglect the coupling to the nonpropagating Evanescer|¢@lion extra assumptions g, h, and i are necessary.
modes. (@) Linear potential flow: The main restriction of the pre-
Figure 6 demonstrates a qualitative agreement betweetented theory is the assumption of a linear potential flow,
the results of our theory3), (47) (solid line), and the nu-  that is a limitation on the wave amplituce[15],
merical calculation of Devillarét al.[17], (points with error
barg. The perturbation conditiof2), and the Born approxi- ako<1
mation (28) for this case are not thoroughly satisfied. ’
Nachbin[18] provides a 1D shallow water localization
theory for an arbitrary amplitude rapidly varying topography (b) Wave interaction: It is well knowf15], that small wave
with kR<1 andkh<1. This theory is based on the confor- interaction leads to the nonlinear Schroedinger equation, and
mal mapping of the rough channel into a channel with a flathat the effect of nonlinearity becomes important over propa-
bottom (similar to our approach for small roughngs¥he  gation distance that scales with wave amplitudaas. We
localization results, in the limit of a small amplitude of varia- consider propagation distance of the order of the transport
tions of the topography, coincide with a limit of E@3) for ~ free path or the localization length, that scale with the am-
smallk. plitude of the irregular topography 452. Hence, for small
In contrast to the above theoretical works on 1D localiza-wavesa<I|, wave energy density transport and localization
tion, our theory for small size irregulariti€®) and (28) is  will not be affected by nonlinearity.
valid for arbitrary irregular geometrithe transfer-matrix ap- (¢) Small inhomogeneities: The next limitation of the theory
proach is applicable for steps ohlgnd for a very large range is the geometric conditiof2). We assumed that the mean-
of wave numbers. Another advantage of the theory is that it square height of the irregularities of the topography is small.
can be easily modified to include a 2D case. Since irregulari¢d) The Born approximation: The Born approximation limits
ties of the near-shore ocean floor are usually small, and corihe theory to a certain range of wave numblegsaccording

a
H<1, k§h3<l' (50
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to Eq.(28). This approximation for weakly irregular bathym- the topographysandbarsare mostly oriented parallel to the
etry is usually not very restrictive. IfiIR/h?)?<1 the Born  shoreline, or their correlation radius in the direction parallel
approximation is valid for all waves. to the shore is much larger than the one in the perpendicular
(e) Viscous damping: In the presence of viscositthe wave  direction, R >R, =R. The difference in directions of inci-
amplitude decays exponentially, with dissipation lengthdent and scattered wavés the course of a single scattering
d(w). For weakly irregular bathymetry?) the dissipation procesy due to this large anisotropy is of the order of
lengthd(w) can be approximated as that for the wave propaR, /Rj<1. Consequently, the phase shift due to the anisot-

gating over a constant depff5], ropy is of the order of R, /RH)Z. This phase difference will
accumulate in the process of multiple scattering. In the re-
diw)= Cqy(ko)sinh(2ksh) gion of sizel,. the number of scattering processes is of the

()= 2vk§ sinh(2kgh) + ko vwl2) (51 order of l,./R,, and the overall phase shift is

(R, /R)?,oc/R, . If this phase shift is small, orRy

Since both the dissipation and the localization processes ae VR, lioc, the results of 1D theory can be applied to aniso-
exponential, small dissipation lengti{w) would mask the tropic 2D geometry.

localization phenomenon completely. Hence, it is important In general, the assumptions a—f that are sufficient for a
for the observation of the water wave localization that thetank experiment are not very restrictive, and can be easily
dissipation length is larger than the localization lengtB). ~ met for particular wavelengths in a large tank. We believe
The kinematic viscosity for water is smalk~0.01 cm/s, that for many coastal regions the assumptions a—e and h are
and the dissipation lengtfs1) for waves with the strongest Met as well. However, the finite size effet g), and the
interaction with irregular bathymetrk,R~1 is usually deviation of the ocean topography from a strictly 1D c@ge
much larger than the localization length. could completely destroy wave localization or make it unob-
(f) Finite-size effect: The described theory was derived forservable due to large uncertainties.

infinite irregular geometry. In reality, the results are valid for
regions of the order or larger than the localization length. For
smaller regions the finite-size effects become very important,
destroying localization and resulting in the large uncertainty We analyzed the problem of 1D linear potential wave
in the reflection coefficient3]. propagation over an irregular topography. For simplicity, the
(g) Geometrically diffuse wave source: It was assumed in theverage depth was considered to be horizontal and the ir-
derivation that the incident wave is monochromatic andregularities(mean-square height of the irregulariliesere
originates from a single source. In reality, the sources obmall. Using the coordinate transformation we reduced this
ocean waves are geometrically diffuse and waves from theggroblem to a problem with flat boundaries and scattering in
sources travel in wave packetso interference between the bulk.

packets is consider@dThe finite size of a wave packet We developed an averaging technique, that breaks the
leads to the uncertainty in the wave numkgrthat is of the  many point correlation function into a product of lower-order
order of sk~1/L. The localization length is not affected by correlations and the deviation from the Gaussian correlation.
this uncertainty ifok does not modify the imaginary part of Using this averaging technique in combination with the Born
the pole in the Green’s functioi27), kosk<Im[X(w)] approximation we calculated the average Green’s function,
~Kko/loc. Or, the size of the wave packet has to be largeithe mean-free-path, the Boltzmann irreducible vertex func-
than the localization lengti>1,,. . This condition is similar  tion, the transport free path, and the problem of wave propa-
to f (finite-size effect, and one should expect the smaller gation over an irregular topography was mapped into the
size wave packets to lead to large uncertainties in localizaelectron impurity scattering problem from solid-state phys-
tion length. ics.

(h) Current: Localization is the consequence of the wave The Boltzmann diffusion coefficient and the localization
interference in the back scattered direction. Even a smalength for the wave energy density were expressed explicitly
current can destroy the phase coherence of the interferinga the correlation function of topography, mean water
waves. The currerttl should be sufficiently small, so that the depth, and wave frequency.

wave that travels a distance of the order of the localization The dependence of the localization length on the wave
length and comes back to the original point in the course ofiumber was analyzed for the random floor with the Gaussian
numerous scattering processes, would gain an insignificagorrelation function and the random step topography. For the

VII. CONCLUSION

phase shift periodic topographythe Born approximation is not valid in
this cas¢ we recovered a trace of the first forbidden band of
loc(@)kgU the Bragg resonance.
w <l (52 The results of the theory for the random step case were

compared with some experimental results and numerical cal-
(i) Anisotropy: It is known that in an isotropic 2D situation culations. In contrast to the transfer-matrix approach, specifi-
the localization length is exponentially large, and localiza-cally designed for the 1D steplike topography, our method
tion effects are weak3]. There is a critical amount of an- for small inhomogeneities is applicable to the arbitrary shape
isotropy (large anisotropywhen one can treat a 2D system of the sea floor, and can be easily extended to a 2D case. The
as one dimensional. In a near-shore region, irregularities dhtter situation could include the long scale variations of
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sandbars in the direction parallel to the shore line. particular waves are completely reflected by irregularities of

We discussed the limitations of the theory, such as, théhe bathimetry. The observation of this phenomenon would
limitation of the linear potential theory, wave interaction, be the first observation of a large scale Anderson localiza-
small inhomogeneities, the Born approximation, viscougion.
damping, finite-size effect, current, geometrically diffuse
wave source, and anisotropy. The results of the theory could
be verified in a tank experimefsimilar to the one done by
Belzonset al., only with small amplitude irregularities and a  This work was supported in part by Professor A.E. Mey-
much larger tankthat meets all the assumptions made in theerovich, Physics Department, University of Rhode Island,
previous section. For coastal waters a large number of adNSF Grant No. DMR-9705304, and Professor C.C Mei, De-
sumptions made could make the localization completely impartment of Civil and Environmental Engineering, Massa-
possible or very difficult to detect. However, if all of the chusetts Institute of Technology, ONR Grant No. NO0014-
conditions of Sec. VI are met for a certain near-shore region89-J-3128.
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