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Diffusion and localization of surface gravity waves over irregular bathymetry

A. Stepaniants*
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02

~Received 29 March 2000; revised manuscript received 18 September 2000; published 21 February 2001!

An interaction of a linear surface gravity wave with weakly irregular one-dimensional bathymetry has been
analyzed using the diagrammatic technique. The Boltzmann diffusion coefficient and the Anderson localization
length for the wave energy density are expressed analytically via a correlation function of irregularities of the
sea floor. The results are applied to different topographies. The effect of a finite region of irregularities, viscous
damping, wave interaction, current, geometrically diffuse wave source, and anisotropy on localization is briefly
discussed. The theory provides a scenario for the observation of large scale Anderson localization phenomenon
in a tank or possibly in coastal waters.
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I. INTRODUCTION

The behavior of surface gravity waves in near shore w
ters is of central importance to coastal oceanography
geomorphology. The interaction of waves with the coas
environment, such as bathymetry and the coastline, aff
the climate waves as well as the evolution of the shorel
Strong variations in near-shore topography can lead to
nificant attenuation or even total reflection of the waves.

For water wave propagation over regularly distribut
sandbars on the bottom of the sea, Bragg resonance is kn
to produce forbidden frequency bands within which tra
mission is inhibited. This phenomenon is adapted to wa
waves from solid-state physics, where electron incident
the lattice, with energy in the forbidden bands, is complet
reflected. For water waves over two-dimensional perio
bathymetry, Bragg resonance has been thoroughly studie
many authors. One of the first articles on this subject belo
to Davies~1982! @1#, who demonstrated that resonant refle
tion takes place if the wavelength of the incident water wa
is twice that of the bottom wavelength.

Unlike the case of periodic bathymetry, water wa
propagating over irregularly distributed sandbars underg
a series of elastic-scattering processes that lead to a ran
ization of its phase. As a result of this scattering, wave ha
diffusive nature similar to a Brownian particle. What
more, at a large enough distance from the source, the w
intensity decays exponentially. Hence, the wave does
propagate beyond a certain region and is completely
flected. This phenomenon is also adopted from solid-s
physics and is known as Anderson localization@2#. The im-
portant difference between Bragg scattering and Ander
localization phenomena is that the former occurs only
forbidden band frequency while the latter happens in the
tire frequency range.

In solid-state physics, the phenomenon of Anderson lo
ization of electrons is known to arise from interference
multiple-scattered electrons from impurities. It is attribut
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to the enhanced interference in the backscattering direct
This phenomenon is responsible for turning a on
dimensional~1D! or 2D conductor with a sufficient concen
tration of defects into an insulator at low temperatures.
self-consistent diagrammatic approach has been develop
describe the Anderson localization~for reviews the reader is
referred to Refs.@3–6#! of electrons by impurities. This ap
proach combines the Feynman diagrammatic technique
the Schroedinger wave equations with averaging over
impurity configurations and relies on the knowledge of t
exact impurity scatteringT matrix.

It is well understood that the concept of localization
very general and is not inherent to quantum particles on
The only two ingredients needed for the localization to ta
place are the wave equation and random media. There
numerous examples of classical wave localization, am
which is the localization of visible light on concentrated su
pension of microspheres@7#, acoustic and electromagnet
wave localization@8#, etc. One of the first attempts to stud
localization on the macroscopic scale has been made
Guazzelliet al., ~1983! @9# and later by Belzonset al. ~1987!
@10#. They observed the localization of 1D surface grav
waves in a tank in which the bottom was composed of r
dom steps.

We present a theory that is similar to the self-consist
diagrammatic approach used for impurity scattering in
bulk. One of the differences is that aT matrix for scattering
by an irregular bathymetry is not available. Another diffe
ence arises from averaging over the different configurati
of the sea floor~as opposed to the positions of impurities!.
To resolve the first problem we perform canonical coordin
transformation that makes the boundaries flat. As a resu
this transformation the boundary scattering problem tra
forms into the problem of scattering in the bulk. This a
proach to solving a stochastic boundary value problem is
new. For example, in Refs.@11,12# this method is applied to
nanascale systems with rough boundaries. To overcome
second difference, we have developed an averaging t
nique for Feynman diagrams, which combined with the Bo
approximation from scattering theory significantly simplifi
the diagrammatic derivation. This technique involves the
pansion of averaged diagrams in deviation from Gauss
behavior. A similar expansion has been used together w
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A. STEPANIANTS PHYSICAL REVIEW E 63 031202
the path integral method for sound propagation throug
fluctuating environment in Refs.@13,14#.

Since some near-shore topographies are very close to
dimensional we prefer to perform all the calculations fo
1D case. The approach presented can be easily extend
cover 2D situation. It is also very suitable for including th
effects of weak wave interaction, current, and a mildly slo
ing irregular bathymetry.

This paper is organized as follows: The formulation o
problem of linear potential wave propagation over a
weakly irregular bathymetry is given in Sec. II. The cano
cal coordinate transformation reduces the scattering prob
with the stochastic boundary condition to the scattering pr
lem with irregularity in the bulk. In Sec. III, the latter prob
lem is reformulated using the Green’s function formalis
and is solved by the Feynman diagrammatic approach
combination with averaging technique. Section IV conta
the Boltzmann diffusion coefficient and Anderson localiz
tion length for the wave energy density that are expres
analytically via the correlation function of irregular topogr
phy. We do not go into a detailed derivation of these tra
port coefficients, but instead provide their expressions us
general results from solid-state physics and kinetic theo
The results of Sec. IV are applied to random rough topog
phy with the Gaussian correlation function and random s
topography. Section V contains the comparison of our the
to the results of some theoretical and experimental publ
tions on this subject. In Sec. VI, we list all limitations of th
theory and review the possibility of water wave localizati
in coastal regions. The destructive effect of a finite region
irregularities~finite size effect!, viscous damping, wave in
teraction, current, geometrically diffuse wave source, and
isotropy on localization phenomenon is discussed. Sec
VII is the conclusion.

II. FORMULATION OF THE PROBLEM

A. Linear potential theory

We consider a 1D linear potential wave propagating o
an irregular bathymetryz(x). Function z(x) describes the
deviation of water depth from its average valueh. For sim-
plicity we assume that the mean depth is horizontal, a
^z(x)&50 (^ . . . & denotes the configurational averaging!.
The velocity potentialF for this system is described by th
following equations@15#:

]2F

]x2
1

]2F

]z2
50, 2h1z~x!<z<0,

]F

]z
2z8~x!

]F

]x
50, z52h1z~x!,

~1!

]2F

]t2
1g

]F

]z
50, z50,

the origin of the framexz is chosen at the free surface wi
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the coordinatez perpendicular to it, andg is the acceleration
due to gravity. So far no assumption is made about the
of the bottom irregularities.

B. Coordinate transformation

The scattering problem~1! with the stochastic boundar
condition at the bottom can be transformed into a probl
with a flat boundary and irregularities in the bulk.

The canonical coordinate transformation must have
following characteristics:
~i! it would flatten the bottom boundary and leave the fr
surface of the water unperturbed;
~ii ! the transformation would simplify the boundary cond
tion atz52h1z(x), getting rid of the term withz8(x), and
leave the condition atz50 unchanged;
~iii ! the Jacobian of the transformation equals one.

The last condition is introduced for convenience, as
ensures the Hermiticity of the perturbation operator. As
from these requirements the choice of the transformatio
arbitrary~of course, the final result is the same for all diffe
ent transformations!.

The irregularities of the topography can be described
two characteristic lengths, the mean-square heightl, and the
correlation radiusR. Our theory relies on the perturbatio
expansion, and is applicable only for small roughness

l !h,R. ~2!

This purely geometric condition is usually not very restr
tive. Large irregularities of the bottom would lead to stro
reflection or even trapping of the wave. This scenario is w
beyond the scope of the diffusion or the Anderson locali
tion phenomenon as we know it.

An example of a transformation that satisfies all of t
above conditions, expanded to the first order inz is

Z5z1S 2
z3

h3
1

z4

h4D z~x!2S z3

h3
1

z4

h4D h2

6
z9~x!1O~z2!,

X5x1S 6
z2

h2
1

z3

h3D E0

x

z~ t !dt

~3!

1S 3
z2

h2
14

z3

h3D h

6
z8~x!1O~z2!.

As a result of this transformation the scattering proble
with the random boundary condition~1! transforms into a
problem of scattering in the bulk

S ]2

]X2
1

]2

]Z2
2V̂D F50, 2h<Z<0,

]F

]Z
50, Z52h,

~4!
]2F

]t2
1g

]F

]Z
50, Z50.

The perturbation operatorV̂ has the form~for brevity we
use lower casex andz in what follows!
2-2
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V̂5F4

h S 3
z2

h2
12

z3

h3D z~x!2hS z2

h2
1

4

3

z3

h3D z9~x!G S ]2

]x2
2

]2

]z2D
1F24

h2 S z

h
1

z2

h2D E0

x

z~x8!dx822S z

h
12

z2

h2
12

z3

h3
1

z4

h4D z8~x!1
h2

3 S z3

h3
1

z4

h4D z-~x!G ]2

]x]z

1F12

h3 S 112
z

hD E
0

x

z~x8!dx82
1

h S 114
z

h
26

z2

h2
24

z3

h3D z8~x!2hS 1

2

z2

h2
1

2

3

z3

h3D z-~x!G ]

]x

2F12

h2 S z

h
1

z2

h2D z~x!2S z

h
12

z2

h2
22

z3

h3
2

z4

h4D z9~x!2
h2

6 S z3

h3
1

z4

h4D z (4)~x!G ]

]z
1O~z2!. ~5!
y
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The solution of the Eq.~4!, that satisfies both boundar
conditions atz52h andz50, can be found in the form

F~x,z,t !5 (
n50

` E f n~z,v!fn~x,v!eivt
dv

2p
, ~6!

where functionsf n are orthonormal in the sense that

E
2h

0

f n~z,v! f m~z,v!dz5dn,m . ~7!

Index n50 denotes the propagating solution with

f 0~z,v!5
A2 cosh@k0~z1h!#

@h1sinh~k0h!cosh~k0h!/k0#1/2
, ~8!

v25gk0 tanh~k0h!. ~9!

The nonpropagating Evanescent modes correspond ton51
to `

f n~z,v!5
A2 cos@kn~z1h!#

@h1sin~knh!cos~knh!/kn#1/2
, ~10!

v252gkn tan~knh!. ~11!

Substituting solution~6! into ~4!, and taking the Fourier
transform we get

(
n50

` S ]2

]x2
1~2dn,021!kn

22V̂~x,z!D f n~z,v!fn~x,v!

50, 2h<z<0. ~12!

Multiplying this equation byf m(z,v) and integrating over
z from 2h to 0 we obtain a system of coupled differenti
equations

(
n50

` F S ]2

]x2
1~2dn,021!kn

2D dm,n2V̂m,n~x!Gfn~x,v!50.

~13!
03120
The coupling is due to the nondiagonal nature of the r
dom perturbation operatorV̂

V̂m,n5E
2h

0

f m~z,v!V̂f n~z,v!dz. ~14!

III. DIAGRAMMATIC APPROACH

A. Green’s function

The Green’s function for the equations~13! is defined as
the solution of the following set

(
n50

` F S ]2

]x2
1~2dn,021!kn

2D dm,n2V̂m,n~x!GGn,k~x,x8,v!

5dm,kd~x2x8!. ~15!

To simplify the diagrammatic derivation it is useful t
separateV̂ into its averagê V̂& and the deviation from the
averageV̂2^V̂&. The presence of̂ V̂&5O(z2), under the
condition ~2! leads to a mean-field correction to the dispe
sion relation, and small coupling between the Eq.~15! al-
ready in the zero order inV̂2^V̂&. The goal of this paper is
to calculate attenuation of the wave to the leading order~not
the mean-field corrections to the dispersion relation a
transport coefficients! that comes from the termV̂2^V̂&. For
this reason we can truncate the expression ofV̂ ~5! at the
leading orderO(z). In all the following calculations we will
use this truncated operator, that has zero average due t
random nature of irregular topography.

In the zero order in perturbationV̂ the set of Eq.~15!
decouples and the solution is easily found in Fourier spa

Gn,k
(0)R,A~x2x8,v!5E Gn,k

(0)R,A~k,v!eik(x2x8)
dk

2p
,

Gn,k
(0)R,A~k,v!5dn,kGn

(0)R,A~k,v!, ~16!

Gn
(0)R,A~k,v!5

1

~2dn,021!kn
2~v!2k27 i0

. ~17!

SuperscriptsR and A stand for retarded and advance
Green’s functions, and a small polei0 in the denominator
2-3
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A. STEPANIANTS PHYSICAL REVIEW E 63 031202
specifies the direction of contour integration forG0
(0)R,A in

Eq. ~16!. The nonperturbed Green’s functions correspond
to Evanescent modes (n51 to `) attenuate exponentially a
distances between the observerx and the sourcex8 larger
than the wavelengthl. For these modes small polei0 is not
important, and there is no difference between retarded
advanced Green’s functions.

The exact solution of the set of equations~15! ~exact
Green’s function! Gm,k

R,A(x,x8,v) satisfies the integral equa
tion

Gm,k
R,A~x,x8,v!5Gm,k

(0)R,A~x2x8,v!

1 (
i , j 50

` E Gm,i
(0)R,A~x2x9,v!

3V̂i , j~x9,v!Gj ,k
R,A~x9,x8,v!dx9. ~18!

The expression~18! is illustrated in Fig. 1 using Feynma
diagrams in coordinate representation. The thin line den
the nonperturbed Green’s functionG(0)R,A, the thick line
corresponds to the exactGR,A, and the cross is the perturba
tion V̂. Over all internal indexes (i , j ) and variables (x9)
summation and integration is assumed.

B. Averaging technique

We define a many point correlationjn of a random func-
tion A as the average over all realizations of the product

jn~x1 ,x2 , . . . ,xn!5^A~x1!A~x2! . . . A~xn!&. ~19!

Let us assume that a random functionA(x) has the fol-
lowing properties:
~i! the even point correlation functionj2n of A is translation-
ally invariant

j2n~x1 ,x2 , . . . ,x2n!5j2n~x11a,x21a, . . . ,x2n1a! ~20!

~ii ! for an odd number of points the correlation functio
j2n11 is zero

j2n11~x1 ,x2 , . . . ,x2n11!50 ~21!

~iii ! for two groups of pointsx1 , . . . ,xk andxk11 , . . . ,x2n ,
separated by a distance much greater than the correla
radiusR of random functionA(x), the 2n-point correlation
function decouples

j2n~x1 , . . . ,x2n!5jk~x1 , . . . ,xk!j2n2k~xk11 , . . . ,x2n!.
~22!

FIG. 1. Diagrammatic representation of the Eq.~18! for the
Green’s functionGR,A.
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If A(x1),A(x2), . . . ,A(x2n) are drawn from a Gaussia
distribution the 2n-point correlation function completely de
couples into a sum of all possible products of two-point c
relation functions

j2n
G ~x1 , . . . ,x2n!

5(
P

j2
G~xi 1

,xi 2
!j2

G~xi 3
,xi 4

! . . . j2
G~xi 2n21

,xi 2n
!,

~23!

where the summation goes over all possible permutation
pointsx1 ,x2 , . . . ,x2n .

For functionA ~not necessarily Gaussian! satisfying the
conditions~20!, ~21!, and~22! we recursively define a devia
tion of the 2n-point correlation function from its Gaussia
analog

D2n~x1 , . . . ,x2n!5j2n~x1 , . . . ,x2n!

2(
P

j2~xi 1
,xi 2

! . . . j2~xi 2n21
,xi 2n

!

2 (
j 51

n21

(
P

D2 j~xi 1
, . . . ,xi 2 j

!

3j2(n2 j )~xi 2( j 11)
, . . . ,xi 2n

!. ~24!

It follows from Eq. ~24! that D250. Another important
property of the deviationD2n(x1 , . . . ,x2n) is that it is trans-
lationally invariant satisfying the condition~20!, and it goes
to zero as the distance between any two groups of its v
ables becomes larger than the correlation radiusR @in con-
trast to the 2n-point correlation functionj2n , which de-
couples according to Eq.~22!#. This property ofD2n , which
follows from Eq.~22!, will be used later in combination with
the Born approximation to simplify the evaluation of th
average Green’s function.

C. Average Green’s function

The configurationally averaged Green’s function^Gm,k
R,A&

depends on the difference between the coordinates of
source and the observer, and can be found from perturba
expansion of the right-hand side of the Eq.~18!. It contains
the averages of products of random perturbationV̂, which is
assumed to meet all the conditions of Sec. III B. From t
moment it is more convenient to continue the derivation ink
space.

After we reduce all the different products of random pe
turbationV̂ according to Eq.~24!, the resulting averages ca
be described by averaged Feynman diagrams. Some of t
diagrams are presented in Fig. 2. The shaded line in
left-hand side corresponds to the average Green’s func
^Gm,n

R,A(k,v)&, the thin line again isG(0)R,A(k,v). The
dashed~averaging! line represents the configurational ave
aging. Hence, in the second diagram on the right of
equality sign two crosses connected by a dashed line de
^Vi , j (k,k1)Vp,q(k1 ,k)&, where
2-4
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DIFFUSION AND LOCALIZATION OF SURFACE . . . PHYSICAL REVIEW E 63 031202
Vi , j~k,k1!5E e2 ikxV̂i , j~x!eik1xdx. ~25!

The averaging lines connecting several crosses~last diagram!
represent the deviation of the many point correlation fu
tion from its Gaussian analog D2n(k2k1 ,k1
2k2 , . . . ,k2n212k). At every cross~intersection of two
thin lines and an averaging line! there is a conservation o
the wave number~see the second diagram on the right-ha
side of the equation in Fig. 2!.

To provide a better understanding of these pictures we
the second diagram in the right-hand side of the equality s
in Fig. 2 in the algebraic form

(
i , j ,p,q

Gm,i
(0)R,A~k,v!Gq,n

(0)R,A~k,v!

3E Gj ,p
(0)R,A~k1 ,v!^Vi , j~k,k1!Vp,q~k1 ,k!&

dk1

2p
.

Figure 2 contains a diagrammatic expansion of the av
age Green’s function in terms of a small perturbationV̂. This
expansion involves an infinite number of terms. We can
duce the number of terms in this expansion~still leaving an
infinite number! by introducing aS matrix. This procedure
will account for all the diagrams that can be cut in two by
vertical line intercepting only a Green’s function. Diagram
of this kind are called reducible diagrams~third diagram on
the right of the equality sign, Fig. 2!. The result is known as
Dyson equation and is illustrated in Fig. 3.

In algebraic form Dyson equation is

FIG. 2. Diagrammatic expansion of the average Green’s fu
tion ^GR,A(k,v)&.

FIG. 3. Dyson equation and diagrammatic expansion of theS
matrix.
03120
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^Gm,n
R,A~k,v!&5(

i , j
Gm,i

(0)R,A~k,v!S i , j
R,A~k,v!^Gj ,n

R,A~k,v!&.

~26!

Solving this matrix equation we find the average Gree
function ^Gm,n

R,A(k,v)&

^GR,A~k,v!&5@G(0)~k,v!212SR,A~k,v!#21, ~27!

where bold letters represent matrixes, and21 in the super-
script denotes the matrix inversion. At this point in the d
grammatic derivation, wave scattering by random irregula
ties of the sea floor converges with the well-establish
theory of electron impurity scattering.

D. Born approximation and mean-free-path

Up to this moment we did not make any assumptions
the wavelengthl. The assumption~2! is purely geometric.
To find the average Green’s function according to Eq.~27! it
is necessary to make an approximation of theS matrix,
given by the diagrammatic expansion in Fig. 3. The appro
mation of theS matrix in the leading order~leaving only the
first diagram in Fig. 3! comes from scattering theory and
called the Born approximation. This approximation for sc
tering by impurities simply means that a particle~wave! un-
dergoes two~if one uses the coherent potential approxim
tion! consecutive scattering by one impurity before it
scattered by another impurity.

For scattering by an inhomogeneous topography the
ture is similar. In this case, the Born approximation mea
that a wave propagating freely from the source, is scatte
twice in the vicinity of the same irregularity~defined by the
correlation radiusR of the topography! and propagates freely
to the next irregularity where it again undergoes a dou
scattering, and so on until it reaches the observer. The B
approximation implies that scattering is weak, and there is
need to account for multiple~more than double! scattering
processes by the same irregularity.

Comparing the fourth-order diagrams in the expansion
the S matrix given in Fig. 3 to the diagram of the secon
order inV̂ ~the leading diagram in the expansion! we get the
Born approximation condition

S lR

h2D 2

!FmaxS kh,
1

khD G2

. ~28!

The diagrams containing the deviationD are smaller than
the diagrams of the same order not involvingD. In proving
this statement one has to take advantage of the propert
D2n , that it goes to zero as the distance between any
groups of its variables becomes larger than the correla
radiusR, setting a constrain on the integration region. Th
insures that theS matrix can be correctly approximated b
the first expansion diagram in Fig. 3.

-

2-5
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A. STEPANIANTS PHYSICAL REVIEW E 63 031202
It is worth mentioning that if (lR/h2)2!1, the Born ap-
proximation condition~28! is satisfied for all waves.

The Born approximation simplifies the matrix inversion
the expression for the Green’s function~27!. For weak per-
turbation, the nondiagonal elements in Eq.~27! are small,
and ^G& can be approximated as

^Gi , j
R,A~k,v!&5

d i , j

~2d i ,021!ki
2~v!2k22S i ,i

R,A~k,v!
. ~29!

The propagating Green’s function in this approximation
not coupled to the Evanescent~nonpropagating! modes, and
has a form

^G0,0
R,A~k,v!&5

1

k0
2~v!2k22S0,0

R,A~v!
. ~30!

The Born approximation~28! also insures that the imag
iner part ofS0,0

R,A(v) is much smaller thank0
2(v), and the

thickness of the spectrum line is negligible

^G0,0
R ~k,v!&2^G0,0

A ~k,v!&52p id„k0
2~v!2k2

…. ~31!

The S matrix in the Born approximation~first expansion
diagram forS in Fig. 3! can be calculated according to th
rules of the diagrammatic technique.S0,0

R andS0,0
A are com-

plex conjugate to each other, and their difference descr
the attenuation of the average wave amplitude due to sca
ing,

S0,0
R ~v!2S0,0

A ~v!5E U0~k0 ,k8!@^G0,0
R ~k8,v!&

2^G0,0
A ~k8,v!&#

dk8

2p

5
i

2k0
@U0~k0 ,k0!1U0~k0 ,2k0!#,

~32!

where we used Eq.~31! to evaluate the integral. HearU0
represents two crosses connected by an averaging line a
called the Boltzmann irreducible vertex function,

U0~k,k8!5^V0,0~k,k8!V0,0~k8,k!&. ~33!

Direct calculations for the perturbation operator~5! give
the following expression for the irreducible vertex functio
U0 and Im@SR#52Im@SA#
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U0~k,k8!5F2kk81~k1k8!2S 1

2
1

3 sinh~2kh!

4k3h3

1
3@12cosh~2kh!#

4k4h4 D G 2
j2~k82k!

@h1sinh~2kh!/2k#2
,

~34!

Im @SR~v!#

5F j2~2k0!1j2~0!S 21
3 sinh~2k0h!

2k0
3h3

1
3@12cosh~2k0h!#

2k0
4h4 D 2G k0

3

@h1sinh~2k0h!/2k0#2
. ~35!

In Eq. ~34! uku5uk8u5k0.
The mean-free-pathl m f p , i.e., the distance over which

waves lose coherence, is defined as

l m f p~v!5
2k0~v!

Im@S0,0
R ~v!2S0,0

A ~v!#
. ~36!

It follows from Eq. ~30! that the average wave amplitud
decays exponentially with the exponent 1/2l m f p(v), and

l m f p~v!21

5F j2~2k0!1j2~0!S 21
3 sinh~2k0h!

2k0
3h3

1
3@12cosh~2k0h!#

2k0
4h4 D 2G k0

2

@h1sinh~2k0h!/2k0#2
. ~37!

IV. RESULTS

A. Diffusion coefficient and localization length

In this section we use some general results of solid-s
physics and kinetic theory to obtain analytic expressions
the Boltzmann transport equation, Boltzmann diffusion co
ficient, and the localization length for the wave energy de
sity. We are not going to duplicate the derivation of equ
tions from this theories. For a detailed diagramma
description of transport phenomena we refer the reade
numerous books and reviews@4,5,16,3,6#.

Wave energy~energy per unit area of the sea surfac!
which is the sum of the kinetic and potential energies can
defined in terms of the velocity potential in the followin
way @15#

E~x,t !5
r

2E2h

0 S U]F

]x U
2

1U]F

]z U
2Ddz1

r

2g U]F

]t U
z50

2

. ~38!

The energy stored in the propagating mode (n50), aver-
aged over several typical periods of waves from the incid
2-6
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band, can be found by substituting the velocity potentia
the form of Eq.~6! into the above expression and using t
orthonormality condition~7!,

E0,0~x,t !5
r

2E S Udf0

dx U2

1k0
2~v!Uf0U2D dv

2p
. ~39!

Averaging Eq.~39! over different configurations of the
sea floor we obtain the expression for the wave energy d
sity

E0,0~v,x,t !5
r

2 S K Udf0

dx U2L 1k0
2~v!^uf0u2& D . ~40!

This expression is identical to the one for electrons
disordered media, described by the Schroedinger equa
Hence, the results from solid-state physics can be use
find the transport free path, the Boltzmann diffusion coe
cient, and the localization length for wave energy density

The transport free pathl m f p
tr , the length scale over which

the wave energy density becomes diffuse, is

l m f p
tr ~v!5

2k0
2

U0~k0 ,2k0!
5

@h1sinh~2k0h!/2k0#2

2k0
2j2~2k0!

.

~41!

The 1D Boltzmann diffusion coefficientDB is related to
l m f p
tr

DB~v!5Cg~k0!l m f p
tr ~v!5

Cg~ uk0u!@h1sinh~2k0h!/2k0#2

2k0
2j2~2k0!

,

~42!

whereCg(k0)5dv/dk0 is the group velocity of the wave.
In the 1D case a coherent back scattering~interference of

waves in a back scattered direction! leads to the reduction o
the diffusion coefficient~42! and localization. To describe
this effect one has to go beyond the Boltzmann approxim
tion, and consider a series of maximally crossed diagram
the irreducible vertex functionU0(k,k8) @the Boltzmann ap-
proximation includes only one diagram~33!#. The result of
the 1D localization theory is that the wave energy dens
decays exponentially with the distance from the source to
observer, and the exponent is 2/l loc ,

l loc~v!54l m f p
tr ~v!5

2@h1sinh~2k0h!/2k0#2

k0
2j2~2k0!

. ~43!

To summarize, the behavior of the wave energy den
has a different nature depending on the distance betwee
source and observer. At a small propagation dista
~smaller than the transport free path, but much larger than
typical wavelength! the wave energy density propagates a
cording to the Boltzmann transport equation
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]

]t
E0,0~k0 ,x,t !1Cg~k0!

]

]x
E0,0~k0 ,x,t !

5
pCg~k0!

k0
E U0~k0 ,k!d~k22k0

2!

3@E0,0~k,x,t !2E0,0~k0 ,x,t !#
dk

2p
, ~44!

whereE0,0(k0 ,x,t) is the wave energy density stored in th
propagating mode corresponding to the wave frequencv
@v is related tok0 according to Eq.~9!#. At an intermediate
propagation distance~order of the transport free path bu
smaller than the localization lengthl loc) the wave energy
density propagation is diffusive. In 1D the interval whe
diffusion can occur is very narrow, and the Boltzmann d
fusion coefficient~42! is renormalized down by the cohere
back scattering phenomenon. At large distance~larger than
the localization length! there is no transport or diffusion, an
the wave energy density is localized.

B. Correlation function of irregular topography

In this section we consider two possible realizations of
irregular topography. The results for the transport free p
~41! and the Boltzmann diffusion coefficient~42! are related
to the localization length, and in what follows we will sho
plots only for the localization length~43!.

For some random topographies the two point correlat
function can be approximated by a Gaussian

j2~x!5 l 2 exp~2x2/2R2!,
~45!

j2~k!5A2p l 2R exp~2k2R2/2!.

In these expressionsl is the mean-square average height
the irregularities andR is the correlation radius~characteris-
tic size!. The second expression in Eq.~45! is the correlation
function in the Fourier representation.

Figure 4 shows the dependence of the localization len
~43! on wave numberk0 for the Gaussian correlation~45!.
This dependence has some general features inherent t
correlation functions of bottom irregularities. The localiz
tion length diverges at very small and very large frequenc
In the low-frequency limit~Rayleigh scattering! the waves
do not resolve the structure of the irregularities, the scat
ing cross section in general is proportional tov4, and the
transport free path diverges ask2v24;k22. In the high-
frequency limit the localization length diverges again, b
cause the points of two consecutive scattering processe
not correlated. Another obvious feature of the localizati
length is that it increases with the increase in depthh ~see
Fig. 4!. The minimal localization length corresponds tokR
;1, when scattering is the strongest.

Next, we consider the topography consisting of rand
steps. The lengths of the stepsLi are randomly drawn from
the distribution uniform onL2DL to L1DL. The heights of
the stepsHi above the average depth level are drawn fro
the distribution uniform on the interval from2DH to DH,
2-7



re

is

he
d

on
-

ic

-

of
the
he

to
ave
x-

the
k in

e to
ere

ich
sult
ns

ve
not
for

ood
for

the

m.
fre-

ults
the
el-
the
e-
ove
ith
of

ly
gth
ll
not
et

ar

A. STEPANIANTS PHYSICAL REVIEW E 63 031202
z~x!5(
2`

1`

Hi@u~x2xi 21!2u~x2xi !#,

~46!
Li5xi2xi 21 .

The correlation function for this topography is

j2~x!5
DH2

3L

3H L2uxu, uxu<L2DL

~L1DL2uxu!2/4DL, L2DL,uxu<L1DL

0, L1DL,uxu,

j2~k!5
2DH2

3Lk2 S 12
sin~kDL !

kDL
cos~kL! D . ~47!

The correlation radiusR in this case is of the order ofL, and
the mean-square height of the irregularitiesl 5DH/A3.

This geometry is considered in order to compare the
sults of this theory to the experimental work of Guazzelliet
al., Belzonset al., and some theoretical calculations. This
done in the next section.

Finally, let us see what happens if we formally apply t
result ~43! to a regular, periodic bathymetry with the perio
2p/K,

z~x!5H cos~Kx!. ~48!

The correlation function in this case is

j2~x!5
H2

2
cos~Kx!,

FIG. 4. Localization lengthl loc /R, Eq. ~43! as a function of
wave numberk0R for the Gaussian correlation function of irregul
topography~45! with l /R50.1. The thick line corresponds toh/R
50.5, and the thin line toh/R50.7.
03120
-

j2~k!5
pH2

2
@d~K1k!1d~K2k!#, ~49!

and the correlation radiusR is infinite. The infinite correla-
tion radius immediately violates the Born approximati
condition~28!. In spite of this, the localization length calcu
lated according to the equations~43! and ~49! has a very
interesting feature. The localization length for the period
bottom is infinite~wave propagates freely! for all wave num-
bers k except fork5K/2 when the localization length be
comes zero~no propagation!. This is a trace of the Bragg
resonance. The reason why we obtain only the indication
the first forbidden band can be explained by the fact that
Boltzmann approximation, used in the derivation, is only t
second-order approximation to theS matrix.

V. COMPARISON WITH OTHER CALCULATIONS

In this section, we compare the results of our theory
some theoretical and experimental works on 1D water w
localization over irregular bathymetry. We start with the e
perimental work of Belzonset al. @10#. One of the results of
this paper is the dependence of the localization length on
wave frequency. The measurements were done in the tan
which the bottom was composed of 58 random steps. Du
the finite-size effect the error bars of the measurements w
very large everywhere, except for the frequencies for wh
the localization is the strongest. The error bars are the re
of configurational averaging over five different realizatio
of the bottom geometry. The work of Guazzelliet al. @9#,
which is the first experimental work on surface gravity wa
localization, is done for a single configuration and does
include error bars. For this reason it is not well suited
comparison.

In Fig. 5, we compare the results of our theory@Eqs.~43!
and~47!# with the experimental results of Belzonset al. The
agreement between theory and the experiment is very g
in spite of the fact that the mean-square average height
the stepsl 50.72 cm, and it is not much smaller thanh
51.25 cm, violating the perturbation condition~2!. This can
be explained by the fact that the next correcting term to
localization length provided by Eq.~43! is of the order of
l 2/h250.33, and is small in comparison to the leading ter
Since the experiment has been done in 1 Hz to 3 Hz
quency range, the Born approximation~28! is valid.

There are two inherent problems in comparing the res
of the experiment to the theoretical results obtained from
linear potential theory. The steps in the experiment of B
zonset al.dissipate energy by generating vortices around
edges. It is very difficult to distinguish the localization r
lated decrease in the average wave amplitude from the ab
dissipation mechanism. Another problem is associated w
very high steps~steps that almost reach the free surface
the water!. In order to make an experiment in a relative
small tank, and to have reasonably small localization len
~smaller than the size of the tank! the authors had to use ta
steps. For waves over these steps the linear theory is
valid, and instead of Anderson localization one could g
nonlinear trapping of the wave.
2-8
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In the theoretical work of Devillardet al. @17#, the local-
ization length is found from the linear potential shallow w
ter theory. The authors are using the transfer-matrix
proach for the bottom composed of random steps. This
theory does not provide correct results in the limit of hi
wave numbersk, due to the fact that the shallow water theo
condition kh!1 breaks down. Otherwise, the results ag
with our calculations done for steps with small amplitud
To extend the theory to the largek region, the authors per
form a numerical study based on the full linear poten
theory. A wide spacing assumptionR@h is made in order to
neglect the coupling to the nonpropagating Evanesc
modes.

Figure 6 demonstrates a qualitative agreement betw
the results of our theory~43!, ~47! ~solid line!, and the nu-
merical calculation of Devillardet al. @17#, ~points with error
bars!. The perturbation condition~2!, and the Born approxi-
mation ~28! for this case are not thoroughly satisfied.

Nachbin @18# provides a 1D shallow water localizatio
theory for an arbitrary amplitude rapidly varying topograp
with kR!1 andkh!1. This theory is based on the confo
mal mapping of the rough channel into a channel with a
bottom ~similar to our approach for small roughness!. The
localization results, in the limit of a small amplitude of vari
tions of the topography, coincide with a limit of Eq.~43! for
small k.

In contrast to the above theoretical works on 1D locali
tion, our theory for small size irregularities~2! and ~28! is
valid for arbitrary irregular geometry~the transfer-matrix ap-
proach is applicable for steps only! and for a very large range
of wave numbersk. Another advantage of the theory is that
can be easily modified to include a 2D case. Since irregul
ties of the near-shore ocean floor are usually small, and c

FIG. 5. Localization lengthl loc as a function of wave frequenc
f for an irregular topography composed of random steps. The s
line is the result for the infinite geometry provided by the Eqs.~43!
and~47!. The points with error bars are the experimental results
Belzonset al. @10#. The average water depth ish51.25 cm, the
average length of the step isL54.1 cm, DL52.0 cm, andDH
51.25 cm.
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ditions ~2! and ~28! are valid for many coastal regions, th
approach is well suited for investigating the possibility of
large scale Anderson localization phenomenon.

VI. LIMITATION OF THE THEORY AND POSSIBILITY
OF OBSERVATION OF WATER WAVE

LOCALIZATION

In this section, we briefly discuss the assumptions mad
the theory on the nature of the wave and the environmen
order to have localization according to Eq.~43!. The assump-
tions a through f are needed for a tank experiment simila
the one done by Belzonset al. @10#. For a near-shore local
ization extra assumptions g, h, and i are necessary.
~a! Linear potential flow: The main restriction of the pre
sented theory is the assumption of a linear potential flo
that is a limitation on the wave amplitudea @15#,

ak0!1,
a

h
!1,

a

k0
2h3

!1. ~50!

~b! Wave interaction: It is well known@15#, that small wave
interaction leads to the nonlinear Schroedinger equation,
that the effect of nonlinearity becomes important over pro
gation distance that scales with wave amplitude asa22. We
consider propagation distance of the order of the trans
free path or the localization length, that scale with the a
plitude of the irregular topography asl 22. Hence, for small
wavesa, l , wave energy density transport and localizati
will not be affected by nonlinearity.
~c! Small inhomogeneities: The next limitation of the theo
is the geometric condition~2!. We assumed that the mean
square height of the irregularities of the topography is sm
~d! The Born approximation: The Born approximation limi
the theory to a certain range of wave numbersk0 according

id

f

FIG. 6. Localization lengthl loc /L as a function of wavelength
l/L for an irregular topography composed of random steps. T
solid line is the result provided by the Eqs.~43! and ~47!. Points
with error bars are the numerical calculation of Devillardet al.,Ref.
@17#, whereDL/L50.5, DH/h55/7, andh/L57/16.
2-9
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A. STEPANIANTS PHYSICAL REVIEW E 63 031202
to Eq.~28!. This approximation for weakly irregular bathym
etry is usually not very restrictive. If (lR/h2)2!1 the Born
approximation is valid for all waves.
~e! Viscous damping: In the presence of viscosityn the wave
amplitude decays exponentially, with dissipation leng
d(v). For weakly irregular bathymetry~2! the dissipation
lengthd(v) can be approximated as that for the wave pro
gating over a constant depth@15#,

d~v!5
Cg~k0!sinh~2k0h!

2nk0
2 sinh~2k0h!1k0~nv/2!

. ~51!

Since both the dissipation and the localization processes
exponential, small dissipation lengthd(v) would mask the
localization phenomenon completely. Hence, it is import
for the observation of the water wave localization that
dissipation length is larger than the localization length~43!.
The kinematic viscosity for water is small,n'0.01 cm/s,
and the dissipation length~51! for waves with the stronges
interaction with irregular bathymetryk0R;1 is usually
much larger than the localization length.
~f! Finite-size effect: The described theory was derived
infinite irregular geometry. In reality, the results are valid f
regions of the order or larger than the localization length.
smaller regions the finite-size effects become very import
destroying localization and resulting in the large uncertai
in the reflection coefficient@3#.
~g! Geometrically diffuse wave source: It was assumed in
derivation that the incident wave is monochromatic a
originates from a single source. In reality, the sources
ocean waves are geometrically diffuse and waves from th
sources travel in wave packets~no interference betwee
packets is considered!. The finite size of a wave packetL
leads to the uncertainty in the wave numberk0, that is of the
order ofdk;1/L. The localization length is not affected b
this uncertainty ifdk does not modify the imaginary part o
the pole in the Green’s function~27!, k0dk!Im@S(v)#
;k0 / l loc . Or, the size of the wave packet has to be lar
than the localization lengthL@ l loc . This condition is similar
to f ~finite-size effect!, and one should expect the small
size wave packets to lead to large uncertainties in local
tion length.
~h! Current: Localization is the consequence of the wa
interference in the back scattered direction. Even a sm
current can destroy the phase coherence of the interfe
waves. The currentU should be sufficiently small, so that th
wave that travels a distance of the order of the localizat
length and comes back to the original point in the course
numerous scattering processes, would gain an insignifi
phase shift

l loc~v!k0
2U

v
!1. ~52!

~i! Anisotropy: It is known that in an isotropic 2D situatio
the localization length is exponentially large, and localiz
tion effects are weak@3#. There is a critical amount of an
isotropy ~large anisotropy! when one can treat a 2D syste
as one dimensional. In a near-shore region, irregularitie
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the topography~sandbars! are mostly oriented parallel to th
shoreline, or their correlation radius in the direction para
to the shore is much larger than the one in the perpendic
direction, Ri@R'[R. The difference in directions of inci-
dent and scattered waves~in the course of a single scatterin
process! due to this large anisotropy is of the order
R' /Ri!1. Consequently, the phase shift due to the anis
ropy is of the order of (R' /Ri)

2. This phase difference will
accumulate in the process of multiple scattering. In the
gion of sizel loc the number of scattering processes is of t
order of l loc /R' , and the overall phase shift i
(R' /Ri)

2l loc /R' . If this phase shift is small, orRi
@AR'l loc, the results of 1D theory can be applied to anis
tropic 2D geometry.

In general, the assumptions a–f that are sufficient fo
tank experiment are not very restrictive, and can be ea
met for particular wavelengths in a large tank. We belie
that for many coastal regions the assumptions a–e and h
met as well. However, the finite size effect~f, g!, and the
deviation of the ocean topography from a strictly 1D case~i!
could completely destroy wave localization or make it uno
servable due to large uncertainties.

VII. CONCLUSION

We analyzed the problem of 1D linear potential wa
propagation over an irregular topography. For simplicity, t
average depth was considered to be horizontal and the
regularities~mean-square height of the irregularities! were
small. Using the coordinate transformation we reduced
problem to a problem with flat boundaries and scattering
the bulk.

We developed an averaging technique, that breaks
many point correlation function into a product of lower-ord
correlations and the deviation from the Gaussian correlat
Using this averaging technique in combination with the Bo
approximation we calculated the average Green’s funct
the mean-free-path, the Boltzmann irreducible vertex fu
tion, the transport free path, and the problem of wave pro
gation over an irregular topography was mapped into
electron impurity scattering problem from solid-state phy
ics.

The Boltzmann diffusion coefficient and the localizatio
length for the wave energy density were expressed explic
via the correlation function of topography, mean wa
depth, and wave frequency.

The dependence of the localization length on the wa
number was analyzed for the random floor with the Gauss
correlation function and the random step topography. For
periodic topography~the Born approximation is not valid in
this case! we recovered a trace of the first forbidden band
the Bragg resonance.

The results of the theory for the random step case w
compared with some experimental results and numerical
culations. In contrast to the transfer-matrix approach, spe
cally designed for the 1D steplike topography, our meth
for small inhomogeneities is applicable to the arbitrary sha
of the sea floor, and can be easily extended to a 2D case.
latter situation could include the long scale variations
2-10
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sandbars in the direction parallel to the shore line.
We discussed the limitations of the theory, such as,

limitation of the linear potential theory, wave interactio
small inhomogeneities, the Born approximation, visco
damping, finite-size effect, current, geometrically diffu
wave source, and anisotropy. The results of the theory co
be verified in a tank experiment~similar to the one done by
Belzonset al.,only with small amplitude irregularities and
much larger tank! that meets all the assumptions made in
previous section. For coastal waters a large number of
sumptions made could make the localization completely
possible or very difficult to detect. However, if all of th
conditions of Sec. VI are met for a certain near-shore reg
,

03120
e

s

ld

e
s-
-

n,

particular waves are completely reflected by irregularities
the bathimetry. The observation of this phenomenon wo
be the first observation of a large scale Anderson local
tion.
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